MATH 1010E University Mathematics
Lecture Notes (week 3)
Martin Li

1 Left-hand and Right-hand Limits

We define the left-hand limit and right-hand limit of a function respectively
by
lim f(z):= lim f(z),
45 7<a

lim f(z):= J%l_r)r}lf(:c)

+
T—a z>a

These can be considered as some kind of “half-limits” since we are consid-
ering the values f(z) when z is close to a but lying on one side of a. They
can be used to prove that a limit exists or not by the following theorem.

Theorem 1.1 We have the following equivalence:

lim f(z) =L < lim+ f(z)=L= lim f(z).

Tr—a

In other words, the limit of f(z) as z — a exists and equals to L if and only
if both the left hand and right hand limits exist and equal to each other.

Example 1.2 Show that lim,_o |z| = 0.

By definition of absolute value,

z  when z > 0,
|z] :=

—x when z < 0. o
Computing the left-hand and right-hand limits, we get 9:—)(
lim |z| = lim (-z)=0, DLW
z—0- z—0- “ o
lim |z| = lim z=0.
z—0*t z—0+

Therefore, by the theorem above, we have lim,_,q |z| = 0.
Theorem 1.1 is especially useful when the function is piecewise defined.

Example 1.3 Calculate the limit lim,_,o f(x) for the function

Fal) = z+1 whenz >0,
T 2241 whenz <O0.




Calculating the left-hand and right-hand limits,

lim f(z) = lim (z® +1) =1,

z—0~ z—0~
e T = I o)

Since both limits exist and are equal, we have lim,_o f(z) = 1.
Example 1.4 Calculate the limit lim,_, f(z) for the function

fz) = z+2 whenz >0,
Tl 2241 whenz <0.

Repeating the calculations as above,

lim f(z) = lim (z®+1) =1,
z—0~

z—0~

lim f(z)= lim (z +2) = 2.
z—0t f( ) :c—>0+( )
Although both limits exist, but they are not equal, so the limit lim,_,o f(z)
does not exists.

The picture shows the difference in their graphs for the two examples
above:
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2 Limits of Rational Functions as z — oo

Recall that a rational function is just a quotient of two polynomial functions,

that is,
pn(z)
f(z) = )
gm ()
where pp(z), ¢m(x) are polynomials of degree n and m respectively.
We look at some examples of limits of rational functions as z — 0.

Example 2.1 (i) lim;_, ”f:—_:rf = iMoo % = 0o.

) 1s z . z 2
(i) limgyo0 5 = limg 00 ﬁ_“{g(gg{g ) —0.

(i) limgyo0 252 = limg o0 TEE/E) = 2.

In summary, we have the following:

oo ifn>m,

lim Pn(2) = 0 ifm>n,
SRR I

where the polynomials are p,(z) = apz™ +ay—12" 1 +-- - +ag and g (z) =
bn™ + by 12™ L 4 - - + by with an, by £ 0.

3 More properties of Limits
Limits behave well with respect to arithmetic operations =, x, =.

Proposition 3.1 If lim,_,, f(z) and lim,;_,, g(x) ezists, then the limit for
f(z) £ g(z), f(z)g9(z) and f(z)/g9(z) all exists as x — a and

(1) limgyq[f(z) £+ g(z)] = limg—yq f(z) + limg—yq g(x).
(2) limga[f(2)g(x)] = limg_yq f() - limgq g(z).
(8) limy_yq Hz) _ limgsa f(2) provided that limg_,, g(z) # 0.

g9(z) " limz—q g(z)

Question: Iflim,_,o[f(x)+g(z)] exists, does it mean that both lim,_,, f(x)
and lim,_,, g(z) exist? Prove it or give a counterexample.

Theorem 3.2 (Comparison Theorem) If f(z) < g(z) for all z € (a,b)
and c € (a,b), then limy_,. f(z) < limg_,. g(x) whenever the limits exist.



In other words, taking limit preserves the ordering. A useful corollary
to the comparison theorem is the following.

Corollary 3.3 (Sandwich Theorem) Fiz some c € (a,b) and suppose
f(z) < g(z) < h(z) for all x € (a,b).
If the limits
lim f(z) = L = lim h(z)

T—C T—C

exists and are equal, then we have lim;_,. g(x) = L.

That is, if a function g(x) is “squeezed” between two functions f(z) and
h(z) and that these two functions have the same limit as # — ¢, then the
function in the middle will also approach the same limit.

%
N
ﬂr:lq(x)

4~ 9
J = fix)

0 — X

The sandwich theorem is a very useful technique to calculate limits. We
will illustrate this by a few examples.

Example 3.4 Show that lim, ,gsinz = 0 by the sandwich theorem.
Solution: We claim that

—|z| < sinz < |z] for all z € R.
If we assume the claim for the moment, since

lim —|z| = 0 = lim |z|,
z—0 z—0

4



by the sandwich theorem, it follows that lim,_,gsinz = 0.
The inequality we claimed can be proved by the picture below:

The length of the red line segment is shorter than the length of the
circular arc joining the same end points. Therefore, we have

\/sinzzv + (1 —cosz)? < z.
It then follows that
2

sin?z < sin®z + (1 — cosz)? < 22,

This proves the claim at the very beginning.

Example 3.5 Show that lim,_,g Sigz =1 using the sandwich theorem.

Solution: As in Example 3.4, we claim that

sinz
coszr < — <1 for all z € R,
x

which implies that lim;_,q Sigx = 1 by the sandwich theorem. To see why

the claim is true, again we look at the picture below:



i x

Note that the area of the red triangle is smaller than the area of the
sector which is smaller than the area of the blue triangle. Hence we have

tanzx.

N =

1. 1
—sinz < §$§

The inequality we claimed follows easily from this.
Alternative solution: We can actually use the series definition of sinz to
see why lim,_,gsinz = 0. Recall that

3
Slnm:x—g—ka—---
Dividing both sides by x, we get
sinz _ z? 5 zd
x 2! 5l

If we let x — 0, all the terms involving x on the right hand side goes to 0,

therefore, the limit is equal to 1.
Question: Using either the series definition or the double angle formula,

prove that

. cosz—1
lim —— =0.
z—0 T
What about
. cosz—1
lim ——— =7
z—0 &

Example 3.6 By doing a simple change of variable, we can calculate

I sin 2z I 2 (sin2zx 2 i sinu 2
= m — = — = —.
250 bz 2905 \ 2z Busd uw 5

Question: What is lim,_, o, SBZ?

(Hint: use the sandwich theorem.)



4 Derivatives as limit of difference quotients

Suppose we are given the graph of a function y = f(z), how do we calculate
the slope of the graph at x = ¢?

9
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The slope of the red line is the answer to the question. If we consider
the two points on the graph corresponding to z = ¢ and x = c+ h, the slope
of the blue line joining these two points is

Afl _ fleth) - flo)
Az| .~ h ’
which is called the difference quotient of f at z = c.

Remember that our goal is to calculate the slope of the red line, not the
blue line. However, as h — 0, we observe that the blue line should coincide
with the red line in the limit. Hence, the limit of the slopes of the blue lines
should be the slope of the red line. Therefore, we define

i Af L fleth) = £

= = lim — = 1i

dz|,_, ~~ hS0Az Koo h
which is called the derivative of f at = c. In other words, the slope of the
graph of f at x = c is given by the number f’(c).

Example 4.1 Let f(z) = z. Calculate the derivative f'(1) from the defini-
tion.

7

Solution: At z =1, the difference quotient is

Af| SO+ -fQ) (4R -1

Az|,_, h h b




Therefore, taking limit as h — 0,

h—0 Az |,_; h—0
In fact, we can show that f'(¢) =1 for any c € R.

Example 4.2 Let f(z) = 2. Calculate the derivative f'(1) from the defi-
nition.

Solution: At z =1, the difference quotient is

Afl _fO+m)-F1) _ (1+h)>-1'  2h+h?
Az z=1-— h - h - h

=2+ h.
Therefore, taking limit as h — 0,

/ . Af ;
(1) —,{E)% Aol ’1115)1%)(2+h) =%,
In fact, we can show that f’(c) = 2c¢ for any c € R.

From the examples above, we see that we can sometimes calculate the
derivative f’(c) at different values of ¢. Therefore, if we think of ¢ as a
variable (defined on where the derivative exists), then we obtain a new
function f’(z) which is also called the derivative of f. In other words,
the derivative of a function is another function (which maybe defined on a
smaller domain).

Question: Show that for any n € N,

d

() — n—1
dz(m) na" .

In fact, we will see later that the above formula holds for any n € R.

5 More complicated examples

In this section, we compute some more complicated derivatives.

Example 5.1 Let f(z) = vz + 2, calculate f'(x).



Solution: The difference quotient is

Af _ flz+h) - (@)
Ax h
ViE+h)+2—- vz +2
h
Vz+h+2—-Vz+2)(Vz+h+2+Vz+2)
h(Vz+h+2+Vz +2)
(z+h+2)—(z+2)
h(Vz+h+2+Vz+2)
1

VZ+h+2+Vz+2

Taking limit as h — 0, we have

f'(z) = lim af lim = S
Ch0AT b0zt ht24vVZ L2 2212

Example 5.2 Show that

—sinx = cosz.
dx

Solution: The difference quotient is

Af _ flz+h) - f(z)

Az h
_ sin(z 4+ h) —sinz
B h
(sinz cosh + coszsinh) — sinz

h

. cosh—1 sin h
= Sinx | ————] +coszx .
h h

Taking limit as h — 0, we have

d . . Af ) . cosh—1 sinh
—sinz = lim — = lim |sinz | —— | 4+ cosz [ —— ]| = cos =,
dx h—0 h

h—0 Az h

using the results from Example 3.5 and the question following it.
Question: Show that

—cosST = —sinz.

dx



6 Differentiability

First, we state precisely the definition of differentiability.
Definition 6.1 Let f : (a,b) — R be a function and fiz ¢ € (a,b). If the

e et )~ (0
. c+h)— f(c
b h
exists (i.e. is a finite real number), then we say that f is differentiable at c
and the value of the limit above is called the derivative of f at ¢, denoted by

daf

dz z=c

f'(c) or

Remark 6.2 Note that f has to be defined at x = c to talk about its deriva-
tive at x = c, this is in contrast with the situation for lim,_,. f(z), where
we do not require f to be defined at x = c.

As a matter of fact, not all the functions are differentiable.
Example 6.3 The function f(z) = |z| is not differentiable at z = 0.

To see this, first we see that the difference quotient is

Af fO+h)—f(0) _ |h|

—_— = = —= I

Azl g h h sgn(h),
where sgn is the sign function we saw in last week’s lecture. We have seen
that limp_,0 sgn(h) does not exist. Therefore, the function f is not differen-

tiable at x = 0. If we look at the graph:

’hv‘) Y= (%)

N —> X

Cavnex Po{wt = Y\L-ET d;ﬂe{ead‘l\c\kle

There is a sharp corner at z = 0. If we approach 0 from the left hand
side, the slope should be —1, but if we approach from the right hand side,
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the slope should be 1. Hence we do not know whether we should assign the
slope at = 0 to be 1 or —1. Thus the slope at x = 0 is not well-defined.
Question: Show that the function defined below is not differentiable at

z=0: . L
zsin when x # 0,
f(=z) = { 0 when z = 0.

Sketch the graph of the function to see why it fails to be differentiable at
z =0.
7 Continuity

Now, we define the concept of continuity of a function.
Definition 7.1 Let f : (a,b) — R be a function and fiz c € (a,b). If

lim f(z) = f(c),

T—rC

then f is continuous at c.

Remark 7.2 Note that in order for f to be continuous at ¢, we indeed
require

(1) f is defined at c,
(2) limg—. f(z) ezist, and
(3) the limit is equal to f(c).

Basic examples of continuous functions include all the elementary func-
tion: polynomials, trigonometric functions, exponential function and loga-
rithm function, on their domains of definition.

Let’s look at some examples of functions which are NOT continuous.

Example 7.3 The function

z—1
T2 hen x # —1
— z+1 w ’
f(@): { 0 when z = —1.
is NOT continuous at x = —1 since lim,_,_1 f(z) does not exist:

11
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Example 7.4 The function

f(z) = { 1;2;11 when x # —1,

\\o\‘\‘ ) i
e

(

~

0 when x = —1.
is NOT continuous at x = —1. Although this time the limit lim,_,_; f(x)
exists but
T——

lim f(z)=—-2#0=f(-1).

Question: How can we change the definition of f to make it continuous?
(Hint: You just have to redefine it at one point!)
Question: Show that The function
o1
zsin= when z # 0,
sy = { 7% 2

0 when z = —1.

is continuous at x = 0.

8 Differentiability vs Continuity
There is a relation between differentiability and continuity of a function.
Theorem 8.1 If f is differentiable at ¢, then f is continuous at c.

Remark 8.2 The opposite implication is obviously false, i.e. there are func-
tions which is continuous at ¢ but not differentiable at c. For example,
f(z) = |z| is continuous at 0 but not differentiable there.

Proof of Theorem 8.1: Suppose f is differentiable at c. By definition,
the limit below exists and is a finite real number

o £ 1) = 1)

h—0 h

= f'(c).
To show continuity of f at ¢, we have to prove that

lim f(z) = f(c),

T—C

which is equivalent to

lim f(c+h) = f(c).

12



To see the last equality,

}lli_r_)r%)f(c—k h) = }{11)% [f(Lh}z_—fﬁ ~h+ f(C)}
- (B e

= f(c)- 0+ f(c) = f(o)-

9 Differentiation Rules I

Differentiation behaves well with respect to + and multiplication by con-
stants.

Proposition 9.1 If f(z) and g(x) are differentiable functions, then
(1) [f(=@) £ 9(=)] = f'(z) £ 4'(2).
(2) [kg(z)] = kg'(x) where k € R is a constant.

Question: Prove the proposition above starting from the definitions.
Since we have already seen that (z") = na™ !, using Proposition 9.1,
we know how to differentiate any polynomials:

(anx™ +an 12" 14+ a1z +ap) = napz™ "t + (n—1)an_12" 2+ +a.

We can also use the rules formally to differentiate sinz and cosz, e.g.

o z3
smx—z—i—i-ﬁ—-“
Differentiate term by term, we get
d . 1 z2 N z?
—sing=1-——+4 ——--- =cosz.
dzx 20 4l
Question: Using the above idea, show that %cosx = —sinx and
diex =e*
= :
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